分布式锁的实现方案探讨

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性(Consistency)、可用性(Availability)和分区容错性(Partition tolerance),最多只能同时满足两项。”所以,很多系统在设计之初就要对这三者做出取舍。在互联网领域的绝大多数的场景中,都需要牺牲强一致性来换取系统的高可用性,系统往往只需要保证“最终一致性”,只要这个最终时间是在用户可以接受的范围内即可。

在很多场景中,我们为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。有的时候,我们需要保证一个方法在同一时间内只能被同一个线程执行。在单机环境中,Java中其实提供了很多并发处理相关的API,但是这些API在分布式场景中就无能为力了。也就是说单纯的Java Api并不能提供分布式锁的能力。所以针对分布式锁的实现目前有多种方案。

针对分布式锁的实现,目前比较常用的有以下几种方案:

a.基于数据库实现分布式锁
b.基于缓存(redis,memcached,tair)实现分布式锁
c.基于Zookeeper实现分布式锁

在分析这几种实现方案之前我们先来想一下,我们需要的分布式锁应该是怎么样的?(这里以方法锁为例,资源锁同理)

a.可以保证在分布式部署的应用集群中,同一个方法在同一时间只能被一台机器上的一个线程执行。
b.这把锁要是一把可重入锁(避免死锁)
c.这把锁最好是一把阻塞锁(根据业务需求考虑要不要这条)
d.有高可用的获取锁和释放锁功能
e.获取锁和释放锁的性能要好


基于数据库实现分布式锁

基于数据库表

要实现分布式锁,最简单的方式可能就是直接创建一张锁表,然后通过操作该表中的数据来实现了。

当我们要锁住某个方法或资源时,我们就在该表中增加一条记录,想要释放锁的时候就删除这条记录。

创建这样一张数据库表:

当我们想要锁住某个方法时,执行以下SQL:

因为我们对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。

当方法执行完毕之后,想要释放锁的话,需要执行以下Sql:

上面这种简单的实现有以下几个问题:

1、这把锁强依赖数据库的可用性,数据库是一个单点,一旦数据库挂掉,会导致业务系统不可用。

2、这把锁没有失效时间,一旦解锁操作失败,就会导致锁记录一直在数据库中,其他线程无法再获得到锁。

3、这把锁只能是非阻塞的,因为数据的insert操作,一旦插入失败就会直接报错。没有获得锁的线程并不会进入排队队列,要想再次获得锁就要再次触发获得锁操作。

4、这把锁是非重入的,同一个线程在没有释放锁之前无法再次获得该锁。因为数据中数据已经存在了。

当然,我们也可以有其他方式解决上面的问题。

  • 数据库是单点?搞两个数据库,数据之前双向同步。一旦挂掉快速切换到备库上。
  • 没有失效时间?只要做一个定时任务,每隔一定时间把数据库中的超时数据清理一遍。
  • 非阻塞的?搞一个while循环,直到insert成功再返回成功。
  • 非重入的?在数据库表中加个字段,记录当前获得锁的机器的主机信息和线程信息,那么下次再获取锁的时候先查询数据库,如果当前机器的主机信息和线程信息在数据库可以查到的话,直接把锁分配给他就可以了。

基于数据库排他锁

除了可以通过增删操作数据表中的记录以外,其实还可以借助数据中自带的锁来实现分布式的锁。

我们还用刚刚创建的那张数据库表。可以通过数据库的排他锁来实现分布式锁。 基于MySql的InnoDB引擎,可以使用以下方法来实现加锁操作:

在查询语句后面增加for update,数据库会在查询过程中给数据库表增加排他锁(这里再多提一句,InnoDB引擎在加锁的时候,只有通过索引进行检索的时候才会使用行级锁,否则会使用表级锁。这里我们希望使用行级锁,就要给method_name添加索引,值得注意的是,这个索引一定要创建成唯一索引,否则会出现多个重载方法之间无法同时被访问的问题。重载方法的话建议把参数类型也加上。)。当某条记录被加上排他锁之后,其他线程无法再在该行记录上增加排他锁。

我们可以认为获得排它锁的线程即可获得分布式锁,当获取到锁之后,可以执行方法的业务逻辑,执行完方法之后,再通过以下方法解锁:

通过connection.commit()操作来释放锁。

这种方法可以有效的解决上面提到的无法释放锁和阻塞锁的问题。

  • 阻塞锁? for update语句会在执行成功后立即返回,在执行失败时一直处于阻塞状态,直到成功。
  • 锁定之后服务宕机,无法释放?使用这种方式,服务宕机之后数据库会自己把锁释放掉。

但是还是无法直接解决数据库单点和可重入问题。

这里还可能存在另外一个问题,虽然我们对method_name 使用了唯一索引,并且显示使用for update来使用行级锁。但是,MySql会对查询进行优化,即便在条件中使用了索引字段,但是否使用索引来检索数据是由 MySQL 通过判断不同执行计划的代价来决定的,如果 MySQL 认为全表扫效率更高,比如对一些很小的表,它就不会使用索引,这种情况下 InnoDB 将使用表锁,而不是行锁。如果发生这种情况就悲剧了。。。


还有一个问题,就是我们要使用排他锁来进行分布式锁的lock,那么一个排他锁长时间不提交,就会占用数据库连接。一旦类似的连接变得多了,就可能把数据库连接池撑爆

总结

总结一下使用数据库来实现分布式锁的方式,这两种方式都是依赖数据库的一张表,一种是通过表中的记录的存在情况确定当前是否有锁存在,另外一种是通过数据库的排他锁来实现分布式锁。

数据库实现分布式锁的优点

直接借助数据库,容易理解。

数据库实现分布式锁的缺点

会有各种各样的问题,在解决问题的过程中会使整个方案变得越来越复杂。

操作数据库需要一定的开销,性能问题需要考虑。

使用数据库的行级锁并不一定靠谱,尤其是当我们的锁表并不大的时候。


基于缓存实现分布式锁

相比较于基于数据库实现分布式锁的方案来说,基于缓存来实现在性能方面会表现的更好一点。而且很多缓存是可以集群部署的,可以解决单点问题。

目前有很多成熟的缓存产品,包括Redis,memcached以及我们公司内部的Tair。

这里以Tair为例来分析下使用缓存实现分布式锁的方案。关于Redis和memcached在网络上有很多相关的文章,并且也有一些成熟的框架及算法可以直接使用。

基于Tair的实现分布式锁其实和Redis类似,其中主要的实现方式是使用TairManager.put方法来实现。

以上实现方式同样存在几个问题:

1、这把锁没有失效时间,一旦解锁操作失败,就会导致锁记录一直在tair中,其他线程无法再获得到锁。

2、这把锁只能是非阻塞的,无论成功还是失败都直接返回。

3、这把锁是非重入的,一个线程获得锁之后,在释放锁之前,无法再次获得该锁,因为使用到的key在tair中已经存在。无法再执行put操作。

当然,同样有方式可以解决。

  • 没有失效时间?tair的put方法支持传入失效时间,到达时间之后数据会自动删除。
  • 非阻塞?while重复执行。
  • 非可重入?在一个线程获取到锁之后,把当前主机信息和线程信息保存起来,下次再获取之前先检查自己是不是当前锁的拥有者。

但是,失效时间我设置多长时间为好?如何设置的失效时间太短,方法没等执行完,锁就自动释放了,那么就会产生并发问题。如果设置的时间太长,其他获取锁的线程就可能要平白的多等一段时间。这个问题使用数据库实现分布式锁同样存在


总结

可以使用缓存来代替数据库来实现分布式锁,这个可以提供更好的性能,同时,很多缓存服务都是集群部署的,可以避免单点问题。并且很多缓存服务都提供了可以用来实现分布式锁的方法,比如Tair的put方法,redis的setnx方法等。并且,这些缓存服务也都提供了对数据的过期自动删除的支持,可以直接设置超时时间来控制锁的释放。

使用缓存实现分布式锁的优点

性能好,实现起来较为方便。

使用缓存实现分布式锁的缺点

通过超时时间来控制锁的失效时间并不是十分的靠谱。


基于Zookeeper实现分布式锁

基于zookeeper临时有序节点可以实现的分布式锁。

大致思想即为:每个客户端对某个方法加锁时,在zookeeper上的与该方法对应的指定节点的目录下,生成一个唯一的瞬时有序节点。 判断是否获取锁的方式很简单,只需要判断有序节点中序号最小的一个。 当释放锁的时候,只需将这个瞬时节点删除即可。同时,其可以避免服务宕机导致的锁无法释放,而产生的死锁问题。

来看下Zookeeper能不能解决前面提到的问题。

  • 锁无法释放?使用Zookeeper可以有效的解决锁无法释放的问题,因为在创建锁的时候,客户端会在ZK中创建一个临时节点,一旦客户端获取到锁之后突然挂掉(Session连接断开),那么这个临时节点就会自动删除掉。其他客户端就可以再次获得锁。
  • 非阻塞锁?使用Zookeeper可以实现阻塞的锁,客户端可以通过在ZK中创建顺序节点,并且在节点上绑定监听器,一旦节点有变化,Zookeeper会通知客户端,客户端可以检查自己创建的节点是不是当前所有节点中序号最小的,如果是,那么自己就获取到锁,便可以执行业务逻辑了。
  • 不可重入?使用Zookeeper也可以有效的解决不可重入的问题,客户端在创建节点的时候,把当前客户端的主机信息和线程信息直接写入到节点中,下次想要获取锁的时候和当前最小的节点中的数据比对一下就可以了。如果和自己的信息一样,那么自己直接获取到锁,如果不一样就再创建一个临时的顺序节点,参与排队。
  • 单点问题?使用Zookeeper可以有效的解决单点问题,ZK是集群部署的,只要集群中有半数以上的机器存活,就可以对外提供服务。

可以直接使用zookeeper第三方库Curator客户端,这个客户端中封装了一个可重入的锁服务。

Curator提供的InterProcessMutex是分布式锁的实现。acquire方法用户获取锁,release方法用于释放锁。

使用ZK实现的分布式锁好像完全符合了本文开头我们对一个分布式锁的所有期望。但是,其实并不是,Zookeeper实现的分布式锁其实存在一个缺点,那就是性能上可能并没有缓存服务那么高。因为每次在创建锁和释放锁的过程中,都要动态创建、销毁瞬时节点来实现锁功能。ZK中创建和删除节点只能通过Leader服务器来执行,然后将数据同不到所有的Follower机器上。

其实,使用Zookeeper也有可能带来并发问题,只是并不常见而已。考虑这样的情况,由于网络抖动,客户端可ZK集群的session连接断了,那么zk以为客户端挂了,就会删除临时节点,这时候其他客户端就可以获取到分布式锁了。就可能产生并发问题。这个问题不常见是因为zk有重试机制,一旦zk集群检测不到客户端的心跳,就会重试,Curator客户端支持多种重试策略。多次重试之后还不行的话才会删除临时节点。(所以,选择一个合适的重试策略也比较重要,要在锁的粒度和并发之间找一个平衡。)


总结

使用Zookeeper实现分布式锁的优点

有效的解决单点问题,不可重入问题,非阻塞问题以及锁无法释放的问题。实现起来较为简单。

使用Zookeeper实现分布式锁的缺点

性能上不如使用缓存实现分布式锁。 需要对ZK的原理有所了解。


三种方案的比较

上面几种方式,哪种方式都无法做到完美。就像CAP一样,在复杂性、可靠性、性能等方面无法同时满足,所以,根据不同的应用场景选择最适合自己的才是王道。

从理解的难易程度角度(从低到高)

数据库 > 缓存 > Zookeeper

从实现的复杂性角度(从低到高)

Zookeeper >= 缓存 > 数据库

从性能角度(从高到低)

缓存 > Zookeeper >= 数据库

从可靠性角度(从高到低)

Zookeeper > 缓存 > 数据库

0

面试题:聊一聊分布式对象存储解决方案

OSS(Object Storage Service)俗称对象存储,主要提供图片、文档、音频、视频等二进制文件的海量存储功能。目前除了公有云提供对象存储服务外,一般私有云比较关心一些开源的分布式对象存储解决方案,本文列举了一些常见的技术方案供参考。

概念普识

块存储

通常SAN(Storage Area Network)结构的产品属于块存储,比如我们常见的硬盘、磁盘阵列等物理盘。

文件存储

一般NAS(Network Attached Storage)产品都是文件级存储,如Ceph的CephFS,另外GFS、HDFS、FastDFS等也属于文件存储。

对象存储

同时兼顾着SAN高速直接访问磁盘特点及NAS的分布式共享特点的一类存储,一般是通过RESTful接口访问。

开源解决方案介绍

Swift

Swift 是 OpenStack 社区核心子项目,是一个弹性可伸缩、高可用的分布式对象存储系统,使用Python语言实现,采用 Apache 2.0 许可协议。

Swift 提供一个基于RESTful HTTP接口的 Object Storage API,用于创建,修改和获取对象和元数据。用户可以使用 Swift 高效、安全且廉价地存储大量数据。Swift 整体架构:

总的来说,企业如果想要建立可扩展的分布式对象存储集群,可以考虑 Swift。

Ceph

Ceph是一种高性能、高可用、可扩展的分布式存储系统,统一的对外提供对象存储、块存储以及文件存储功能,底层使用C/C++语言。

其中对象存储功能支持 2 种接口:

1、兼容S3:提供了对象存储接口,兼容 S3 RESTful 接口的一个大子集。

2、兼容Swift:提供了对象存储接口,兼容 Openstack Swift 接口的一个大子集。

Ceph是一个企业级分布式存储系统,功能强大,不仅可以为企业建立对象存储服务,还可以帮助企业建立自己的云平台,具有广泛的应用场景特别是在云环境下使用广泛。

Minio

Minio是一个企业级、兼容S3接口的对象存储系统。Minio基于 Apache 2.0 许可协议,采用Go语言实现,客户端支持Java、Python、Go等多种语言,是一种轻量级、高并发的开源解决方案,可以作为云存储方案用来保存海量的图片,视频,文档等。

大数据集成方面,Minio支持各种常见的查询计算引擎,比如Spark、Presto、Hive以及Flink等,可以使用这些处理框架查询分析对象数据,此外,Minio支持Parquet,Json、Csv格式等多种文件存储格式,包括压缩与编码。更多特性可以参考官网 地址https://min.io。Minio架构:

Minio主要为人工智能、机器学习而设计,并适用于其他大数据负载。从架构与功能方面考虑,Minio是一个比较好的开源对象存储解决方案。

HBase MOB

这是利用HBase的MOB特性支持对象存储功能。Apache HBase2.0 版本开始支持中等对象存储(Medium Object Storage,简称 MOB),这个特性使得HBase能够非常良好的存储大小在100KB-10M的图片、文档、音频、短视频等二进制数据。

架构如上,HBase MOB的设计类似于HBase + HDFS的方式,中等对象在写入HDFS之前同样是先写入MemStore,但是刷写与其他写入数据不同,MOB数据被刷写到MOB File中,MOB File被存放在特殊的Region中。

MOB特性在Apache HBase 2.0、CDH 5.4.x 或 HDP 2.5.x 及以上版本支持,用户可以基于HBase MOB特性设计自己的对象存储服务。

Hadoop Ozone

Ozone是 Apache Hadoop 的子项目,为了提供分布式、可扩展的对象存储功能,主要是为了弥补HDFS在小文件存储方面的不足之处。Ozone建立在一个高可用、支持块复制的Hadoop分布式数据存储层之上,称为Hadoop Distributed Data Store(HDDS),上层可对接 Spark、Hive 以及 Yarn 等计算调度引擎。但是目前还处于alpha内部测试版本,暂时不建议生产环境中使用。

小结

对象存储主要是解决海量图片、文档、音视频的存储,其中主流的重量级解决方案是Swift与Ceph,它们各有特点,可以参考搜索引擎上的对比,Hadoop生态体系中备受关注的是HBase MOB,另外轻量级的Minio也是一种比较好的选择。MongoDB也提供了大文件存储模块GridFS。建议根据实际情况做技术选型。

0

分布式架构设计里的Eureka与ZooKeeper区别理解

前言

一个系统最重要的是什么?是数据。数据放在哪?数据库里。但是光有数据也不行,还需要程序对数据进行各种增删改查操作。

那各种增删改查操作,最重要的是什么?是数据的安全性、可扩展性和性能。

数据库又分关系型数据库和非关系型数据库。

关系型数据库RDBMS(Relational database management system)MySQL、SQL server、Oracle我们都经常用,其遵循的事务原则是ACID原则(Atomicity:原子性、Consistency:一致性、Isolation:隔离性、Durability:持久性)

非关系型数据库NoSQL(Redis、MongoDB)遵循的原则是CAP原则一致性(Consistency)、可用性(Availability)、分区容错性(Partition tolerance)。CAP 原则指的是,这三个要素最多只能同时实现两点,不可能三者兼顾。

分布式系统架构设计

我们在进行分布式架构设计时,关系数据库的很多主要特性却往往无用武之地。

数据库事务一致性需求

很多web实时系统并不要求严格的数据库事务,对读一致性的要求很低,有些场合对写一致性要求并不高。允许实现最终一致性。

数据库的写实时性和读实时性需求

对关系数据库来说,插入一条数据之后立刻查询,是肯定可以读出来这条数据的,但是对于很多web应用来说,并不要求这么高的实时性,比方说发一条消息之 后,过几秒乃至十几秒之后,我的订阅者才看到这条动态是完全可以接受的。

对复杂的SQL查询,特别是多表关联查询的需求。

任何大数据量的web系统,都非常忌讳多个大表的关联查询,以及复杂的数据分析类型的报表查询,特别是SNS类型的网站,从需求以及产品设计角度,就避免了这种情况的产生。往往更多的只是单表的主键查询,以及单表的简单条件分页查询,SQL的功能被极大的弱化了。

而与之不同的是,NoSQL系统通常注重性能和扩展性,而非事务机制(事务就是强一致性的体现)。

cap原则

CAP理论也就是说在分布式存储系统中,最多只能实现以上两点。而由于当前网络延迟故障会导致丢包等问题,所以我们分区容错性是必须实现的。也就是NoSqL数据库P肯定要有,我们只能在一致性和可用性中进行选择,没有Nosql数据库能同时保证三点。(==>AP 或者 CP)。

提出一个想法,当你面对双十一这种业务处理时,你是选择AP还是CP呢?

个人想法是在面对这种业务处理时,先保证可用性也就是AP原则(服务器不能瘫痪),在过了双十一高峰,再核对数据,保证数据一致性。

Eureka和ZooKeeper的区别

综上,我们在进行分布式架构设计时,就必须针对上面提到的cap原则做出取舍。

一般是通过分布式缓存中各节点的最终一致性来提高系统的性能,通过使用多节点之间的数据异步复制技术来实现集群化的数据一致性。通常使用类似 redis 之类的 NOSQL 作为实现手段。

Eureka和Zookeeper就是CAP定理中的实现,Eureka(保证AP),Zookeeper(保证CP)

zookeeper保证cp

当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接down掉不可用。也就是说,服务注册功能对可用性的要求要高于一致性。但是zk会出现这样一种情况,当master节点因为网络故障与其他节点失去联系时,剩余节点会重新进行leader选举。问题在于,选举leader的时间太长,30 ~ 120s, 且选举期间整个zk集群都是不可用的,这就导致在选举期间注册服务瘫痪。在云部署的环境下,因网络问题使得zk集群失去master节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。

Eureka保证AP

Eureka看明白了这一点,因此在设计时就优先保证可用性。Eureka各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而Eureka的客户端在向某个Eureka注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台Eureka还在,就能保证注册服务可用(保证可用性),只不过查到的信息可能不是最新的(不保证强一致性)。除此之外,Eureka还有一种自我保护机制,如果在15分钟内超过85%的节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,此时会出现以下几种情况:

  1. Eureka不再从注册列表中移除因为长时间没收到心跳而应该过期的服务
  2. Eureka仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上(即保证当前节点依然可用)
  3. 当网络稳定时,当前实例新的注册信息会被同步到其它节点中

Zookeeper的设计理念就是分布式协调服务,保证数据(配置数据,状态数据)在多个服务系统之间保证一致性,这也不难看出Zookeeper是属于CP特性(Zookeeper的核心算法是Zab,保证分布式系统下,数据如何在多个服务之间保证数据同步)。Eureka是吸取Zookeeper问题的经验,先保证可用性。

0